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Symmetric Matrix



Symmetric Matrix

0 A symmetric matrix is a matrix A such that AT = A. Such a matrix is
necessarily square. Its main diagonal entries are arbitrary, but its
other entries occur in pairs - on opposite sides of the main

diagonal.
0 0 -1 0 a b ¢
Symmetric: [0 _3], -1 5 81| |b d e
0O 8 -7 c e f
. 1 —3 1 —4 O 5 4 3 2
Nonsymmetric: [3 0], -6 1 -4, |4 3 2 1
0 -6 1 3 2 1 0




Orthogonally Diagonalizable
Definition

A square matrix A is orthogonally diagonalizable if its eigenvectors
are orthogonal.



Eigenvalues of Symmetric Matrix

Theorem

All the eigenvalues of matrix A (a real symmetric matrix) are real.

Proof?



Algebraic § Geometric Multiply

Theorem
For real symmetric matrix:

Geometric multiplicity of A = Algebraic multiplicity of 4

Proof?



Orthogonally Diagonalizable

Theorem

Ann X n matrix A is orthogonally diagonalizable if and only if A is @
symmetric matrix.

(=):
A=AT = A=QAQT,A =diag{y, -, 1}

(<):
A=AT € A=QAQ", A =diag{A{,-++,1,,},Q is orthogonal =>Q"' =071

AT=(QAQ™H)" = (QAQT)T QATQ"=QAQ"=



Relationship between eigenvalue and pivot signs

Theorem

For a symmetric matrix the signs of the pivots are the signs of the

eigenvalues.
number of positive pivots=number of positive eigenvalues

0 We know that determinant of matrix is product of pivots.
0 We know that determinant of matrix is product of eigenvalues.

No Proof!
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Quadratic Form



Quadratic Form

O A quadratic form is any homogeneous polynomial of degree two
in any number of variables. In this situation, homogeneous means
that all the terms are of degree two.

o For example, the expression 7x;x, + 3x,x, iS homogeneous,
but the expression x; — 3x;x, is not.

o The square of the distance between two points in an inner-
product space is a quadratic form.



Quadratic Form

« Given a square symmetric matrix A € R™" and a vector x € R", the
scalar value xTAx is called a quadratic form.

n
z Al-jxl-xj

j=1

M:

n n n
.X'TAX = in(AX)i = in zAUX]
i=1 j=1

i=1

Il
=

[

e A quadratic form on R"is a function Q@ defined on R™ whose value
at a vector x in R™ can be computed by an expression of the form
Q(x) = xTAx, where 4 is an n X n symmetric matrix. The matrix 4 is
called the matrix of the quadratic form.



Quadratic Form

Definition

Suppose X is a vector space over R. Then a function @: X - R is

called a quadratic form if there exists a bilinear form f: X XX - R
such that:

Q(x) = f(x,x) forallx e X

Example

Simplest example of a nonzero quadratic form is ...



Quadratic Form

Example
1= [4 0]
Without cross-product term: 0 3
A= |3 —z]
With cross-product term: -2 7

Tip
* Quadratic forms are easier to use when they have no cross-product

terms; that is, when the matrix of the quadratic form (A) is a diagonal
matrix.



Quadratic Form

Example

For x in R3, let Q(x) = 5x% + 3x3 + 2x3 — x,x, + 8x,x3. Write this
quadratic form as xT Ax.



Change of Variable in QF

dIf x represents a variable in R™, then a change of variable is an
equation of the form:

_ _ p-1
X =Py or equivalently, =

where P is an invertible matrix and y is a new variable vector in R™.

Note

y can be regarded as the coordinate vector of x relative to the basis
of R" determined by the columns of P.



Change of Variable in QF

0 If the change of variable is made in a quadratic form xT Ax, then

xTAx = (Py)TA(Py) = y"PTAPy = y"(PTAP)y

o The new matrix of the quadratic form is PTAP.

o A is symmetric, so there is an orthogonal matrix P such that
PTAP is a diagonal matrix D.

o Then the quadratic form xT Ax becomes y'Dy. There is no
cross-product.



Quadratic Form

0 If Aand B are n X n real matrices connected by the relation

1
B=E(A+AT)

then the corresponding quadratic forms of A and B are identical,
and B is symmetric



Classifying Quadratic Forms

dWhen 4 is an n X n matrix, the quadratic form @(x) = xTAx is @
real-valued function with domain R™.

point (x1,x,,%) where z = Q(x)

(@) 3 = 3x? + 7x3 (b) z = 3x2 (c)z =3x% —7x2 (d)z = —3x% — 7x2
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Classifying Quadratic Forms

A symmetric matrix A € S™ is positive definite (PD) if for all non
zero vectors A € R™, xTAx > 0. This is usually denoted 4 > 0, and
often times the set of all positive definite matrices is denoted SZ%,.

A symmetric matrix A € §™ is positive semidefinite (PSD) if for all
vectors xTAx = 0. This is written 4 = 0, and the set of all positive
semidefinite matrices is often denoted S%.

O Likewise, a symmetric matrix A € S is negative definite (ND),
denoted A < 0 if for all non-zero x € R™, xTAx < 0.

d Similarly, a symmetric matrix A € S™ is negative semidefinite
(NSD), denoted 4 < 0 if for all x € R®, xTAx < 0.

dFinally, a symmetric matrix A € S™ is indefinite, if it is neither
positive semidefinite nor negative semidefinite; i.e, if there exists
x1, %, € R™ such that xTAx; > 0 and x2 Ax, < 0.



Classifying Quadratic Forms

Definition

A quadratic form Q is:

positive definite if Q(x) > 0 for all x # 0;

negative definite if Q(x) < 0 for all x # 0;

indefinite if Q(x) assumes both positive and negative values;
positive semidefinite if Q(x) = 0 for all x;

negative semidefinite if Q(x) < 0 for all x;

O For diagonal matrix A =

a

0

0 a,

0

0

2 @

an

0(x) = xT Ax

= xTAx = a;x% + a,x5 + -+ + a, x2.



Geometric Interpretation
0 Q(x) = xTAx

(Ax).x

0 8 = arccos(

IIxIIIIAxII)




Characterization of Positive Definite Matrices

Suppose A € M, (IF) is self-adjoint (4* = A).. The following are
equivalent:

a) A is positive definite.
b) All of the eigenvalues of A are strictly positive.
c) Thereis an invertible matrix B € M, (FF) such that A = B*B

d) Thereis a diagonal matrix D € M,,(R) with strictly positive
diagonal entries and a unitary matrix U € M, (IF) such that
A=UDU".

You can extend these facts to other categories!



Characterization of Positive Definite Matrices

Suppose A € M, (IF) is self-adjoint (4* = A). The following are
equivalent:

a) A is positive semidefinite.
b) All of the eigenvalues of A are non-negative.
c) Thereis a matrix B € M,,(F) such that A = B*B, and

d) Thereis a diagonal matrix D € M,,(R) with non-negative
diagonal entries and a unitary matrix U € M, (IF) such that

A=UDU"



Quadratic Form

Theorem
Let A be an n X n symmetric matrix. Then a quadratic form xT Ax is:

» positive definite if and only if the eigenvalues of A4 are all positive;

» negative definite if and only if the eigenvalues of 4 are all
negative;

 indefinite if and only if A has both positive and negative
eigenvalues;

O How about semidefinite?
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Positive Definite
Tests




Change of Variable in QF

Five tests to see whether a matrix is positive definite or not:

xTAx > 0 for all x (other than zero-vector)

If Ais positive definite, A = STS (S must have independent columns.)

1.

2

3. All eigen values are greater than 0

4. Sylvester’s Criterion: All upper left determinants must be > 0.
5

Every pivot must be > 0

Note

A positive definite matrix A has positive eigenvalues, positive pivots,
positive determinants, and positive energy v’ Av for every vector v. 4
= STS is always positive definite if S has independent columns.



Positive Definite Matrices

For positive definite matrices we had:

« /fS js positive definite, S = AT A (A must have independent columns,)

Theorem

If S is positive definite S = ATA (A must have independent columns):
AT A is positive definite iff the columns of 4 are linearly independent.

O Proof?



Positive Definite Matrices

For positive definite matrices we had:

« All eigen valves are greater than 0.

Theorem

If a matrix is positive definite, then its eigenvalues are positive.

a Proof?
Theorem

If a matrix has positive eigenvalues, then it is positive definite.

a Proof?



Positive Definite Matrices

For positive definite matrices we had:
« Sylvesterss Criterion. All upper left determinants must be > 0.

—1‘ 0‘

A=ll-1 2| -1
L0 -1 2

Theorem

If a matrix is positive definite, then it has positive determinant.

a Proof?



Sylvester’s Criterion

Theorem

Then A is positive definite if and only if, for all 1 < k < n, the
determinant of the top-left k X k block of A is strictly positive.

O Proof?



Sylvester’s Criterion for Positive Semidefinite Matrices

A principal minor of a square matrix is the determinant of a
submatrix of A that is obtained by deleting some (or none) of its
rows as well as the corresponding columns.

A matrix is positive semidefinite if and only if all of its principal
minors are non-negative.

c
e

f

S Q

B =

o QU T

3]

are a, d, f,det(B) itself, as well as

det( ; Z]) — ad — |b|? det([‘; ]‘i]) o2 det( ‘; ]’}D — df —|ef?



Pivots & Positive Definite Matrices

Theorem

If a matrix has positive pivots, then it is positive definite.

O Proof?



Properties

Important

a
a

If A is positive definite, A~1 will also be positive definite.

If A and B are positive definite matrices, A + B will also be @

positive definite matrix.

Positive definite and negative definite matrices are always full rank,
and hence, invertible.

For A € R™™ gram matrix is always positive semidefinite. Further,
it m > n (and we assume for convenience that A is full rank), then
gram matrix is positive definite.



Properties

Important

Suppose A, B € M, are positive (semi)definite, P € M, ,,, is any
matrix, and ¢ > 0 is real scalar. Then
a) A+ B is positive (semi)definite.
b) cA is positive (semi)definite.
o) AT is positive (semi)definite, and
d)y P*AP is positive semidefinite. Furthermore, if A is positive definite
then P*AP is positive definite if and only if rank(P) = m.
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Gram Matrix



O

Gram Matrix
Gram(A) : ATA

L symmetric

L non-negative eigenvalues

Ureal eigenvalues

Jorthonormal eigenvectors
a

Proof?
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